Medical Researches
Possibly Effective
Based on 31 Researches
Eicosapentaenoic acid aids liver healthAntarctic Krill Oil Supplementation Attenuates Hypercholesterolemia, Fatty Liver, and Oxidative Stress in Diet-Induced Obese Mice.
Moderate relevance to liver disease
We explored the effectiveness of eicosapentaenoic acid (EPA), a key component of Antarctic krill oil, in battling obesity and its associated liver issues. Our investigation specifically aimed to understand how EPA influences cholesterol levels and overall liver health, especially in the context of diet-induced obesity.
Using a mouse model and analyzing various molecular pathways, we observed that a high-fat diet led to increased oxidative stress and obesity-related indicators, which are harmful to liver function. However, the introduction of EPA showed promising results in reducing oxidative stress, fat accumulation, and improving key metabolic parameters. These improvements were linked to better cholesterol management and support for liver health.
The findings suggest that EPA might serve as a valuable intervention for those struggling with obesity-related liver disease. By enhancing cholesterol metabolism and addressing oxidative stress, EPA could play a role in the prevention and treatment of these conditions. Overall, our results indicate a potential pathway for therapeutic applications in liver health through EPA supplementation.
Read More
We conducted an intriguing study to explore the effects of tyrosol (TYR), a compound enriched with beneficial properties, on nonalcoholic fatty liver disease (NAFLD) in mice. Males of the C57BL/6J strain were divided into groups that received either a low-fat diet, a high-fat diet, or a high-fat diet supplemented with 0.025% TYR for 16 weeks.
Observations revealed that the mice consuming the TYR-enriched diet experienced a notable decrease in both final body weight and liver fat accumulation compared to those on just the high-fat diet. A closer examination of liver metabolites showed an increase in key substances, including eicosapentaenoic acid (EPA), which suggests that TYR positively influences lipid metabolism and supports liver health.
We further investigated the mechanism behind these benefits and found that TYR interacts with a receptor known as peroxisome proliferator-activated receptor-alpha (PPARα). This interaction is crucial in regulating liver lipid processing, helping to turn on the genes that promote better lipid management.
Overall, this compelling evidence indicates that TYR, particularly through its role involving EPA and PPARα, could be a promising dietary addition for alleviating fatty liver disease in contexts of poor diets. We are excited about these insights and their potential implications for improving liver health.
Read More
We explored the impact of eicosapentaenoic acid (EPA) and other omega-3 polyunsaturated fatty acids (n-3 PUFA) on liver inflammation related to inflammatory bowel disease (IBD). Using a transgenic mouse model known as fat-1 mice, we saw how increased levels of n-3 PUFA in tissues could play a role in reducing liver damage associated with colitis.
Our study pointed out that those fat-1 mice experienced less severe liver inflammation and oxidative stress compared to wild-type mice when subjected to a chemical that induces colitis. This is significant because while many discussions around omega-3 fatty acids center on their benefits for gut health, our findings suggest they also hold promise in addressing liver complications that might arise due to gut inflammation.
Additionally, we observed notable increases in certain beneficial metabolites derived from EPA, which are linked to reducing inflammation. These findings underline a strong connection between dietary n-3 PUFA intake and less oxidative stress in the liver, which could open up new avenues for therapeutic approaches in managing IBD and its systemic effects.
Read More
DHA combined with MCTs beneficialCosupplementation with DHA and medium-chain triglycerides ameliorates NAFLD and reduces amyloid-β accumulation by modulating hepatic lipid metabolism in APP/PS1 mice.
Moderately relevant due to combination
We explored the effects of docosahexaenoic acid (DHA) on liver disease, specifically looking at its role in nonalcoholic fatty liver disease (NAFLD) and its potential connection to Alzheimer's disease. Our study conducted on APP/PS1 mice involved four groups of animals fed different diets—one with DHA, one with medium-chain triglycerides (MCTs), and one that combined both treatments.
Throughout the study, which lasted eight months, we observed a significant reduction in blood and liver lipids in the group that received both DHA and MCTs. This combination not only alleviated signs of NAFLD but also reduced the buildup of amyloid-β (Aβ), a protein linked to Alzheimer's, in the brain and serum.
Additionally, our findings indicated that DHA combined with MCTs improved the activity of liver enzymes critical for lipid metabolism. This suggests that these compounds together may enhance the liver's ability to clear fat and cholesterol while also increasing Aβ clearance.
While we noted the benefits of DHA, it's important to remember that the effects we observed were influenced by the combination with MCTs, making it challenging to pinpoint DHA's isolated impact. Still, our research provides valuable insight into how enhancing dietary fats could support liver health and potentially mitigate connections to neurodegenerative diseases.
Read More
Docosahexaenoic acid for liver cancerAPT imaging of hepatocellular carcinoma signals an effective therapeutic response in advance of tumor shrinkage.
Examines DHA effectiveness in therapy
We explored the effectiveness of docosahexaenoic acid (DHA), particularly when delivered via nanoparticles, in treating liver disease, specifically hepatocellular carcinoma (HCC), in three rodent models. Our focus was on understanding how DHA affects HCC lesions as well as the performance of weighted amide proton transfer (APT) MRI as a monitoring tool.
In all three models—diethylnitrosamine (DEN) induced HCC, N1S1 syngeneic orthotopic xenograft, and human HepG2 ectopic xenograft—the APT MRI revealed higher signals from the cancerous tissue compared to surrounding normal tissue. Notably, in the DEN model, we found that the APT signal could effectively differentiate between malignant lesions and benign nodules.
After administering LDL-DHA nanoparticles directly into tumors, we observed a rapid decrease in APT signals within 72 hours, suggesting a promising therapeutic response. This trend was consistent in both N1S1 and HepG2 xenografts, indicating that DHA's effects, accelerated by nanoparticles, hold potential for therapeutic applications in liver cancer management.
Overall, our findings underscore the utility of APT imaging in the diagnostic and therapeutic landscapes of HCC, showcasing how innovative delivery methods can enhance treatment outcomes.
Read More
User Reviews
This is a basic health supplement. Omega reduces inflammation in the body and is essential for the health of the cardiovascular system, nervous system, brain, and liver.
I tried it for a change, as I regularly take Omega for the health of my blood vessels and liver disease. I recommend it to everyone!
I believe the product content should be better, but it’s effective. My elbow inflammation has greatly eased since taking Omega-3. Although I haven't been able to do the triple extension exercise, other movements are now pain-free. If you have joint inflammation like I do, take one in the morning and evening.
Read More
Reduces skin inflammation
A very good product that helps to reduce inflammation in the body and skin. It should be taken regularly to protect the liver, brain, and heart.
This is a basic health maintenance nutraceutical recommended for everyone. Omega reduces inflammation in the body, is essential for the cardiovascular system, nervous system, brain, and liver. I take two tablets during breakfast and two during lunch, and I’ve ordered another two months for a full three-month course.
Read More